
## Ubbelohde viscometers with TC sensors



Viscometers with suspended ball level for determination of absolute and relative kinematic viscosity of liquids with Newtonian flow behaviour. The measuring levels are marked by TC sensors. The meniscus passage is detected due to the different conductivity of the liquid phase and the gas phase. A measurement stand of the type series AVS/S is not required. TC viscometers can be used to determine the kinematic viscosity of all liquids with Newtonian flow behaviour.

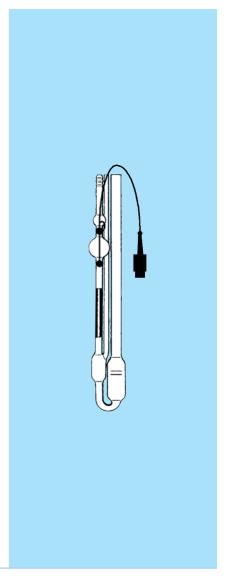
They are especially suitable for liquids that cannot be detected with other systems: untransparent and/or black and/or electric conductive measuring samples.

TC viscometers are manufactured from technical glass types with an expansion coefficient of  $= ca. 9 \cdot 10 - 6$ . Due to the electric properties of TC sensors, it is important to make sure that a type is selected that is suitable for the required application temperature.

#### TC viscometers with additional filling and cleaning tube and with glass thread

- the technical measurement characteristics are in accordance with DIN 51 562, part 1, ISO/DIS 3105 (BS-IP-SL)
- for use in combination with an automatic viscosity measuring instrument and an AVS 24, AVS 26 or AVS 270 automatic viscometer cleaner
- filling quantity: 18 ... 22 ml
- overall length: approx. 355 mm

calibrated, with constant for automatic measurements


|            |           |            |           |             |           |               | Capillary | Constant K | Measuring range [mm <sup>2</sup> /s] |
|------------|-----------|------------|-----------|-------------|-----------|---------------|-----------|------------|--------------------------------------|
| Type No.   | Order No. | Type No.   | Order No. | Type No.    | Order No. | Capillary No. | Ø i [mm]  | (approx.)  | (approx.)                            |
| +10 +80 °C |           | -40 +30 °C |           | +70 +150 °C |           |               |           |            |                                      |
| 562 03     | 285423120 | _          | _         | -           | _         | 0c            | 0.47      | 0.003      | 0.5 3                                |
| 562 10     | 285423130 | 563 10     | 285423240 | 564 10      | 285423330 | I             | 0.54      | 0.01       | 1,2 10                               |
| 562 13     | 285423140 | 563 13     | 285423250 | 564 13      | 285423340 | lc            | 0.84      | 0.03       | 3 30                                 |
| 562 20     | 285423150 | 563 20     | 285423260 | 564 20      | 285423350 | II            | 1.15      | 0.1        | 10 100                               |
| 562 23     | 285423170 | 563 23     | 285423270 | 564 23      | 285423360 | llc           | 1.51      | 0.3        | 30 300                               |
| 562 21     | 285423160 | _          | _         | -           | _         | lla           | 1.69      | 0.5        | 50 500                               |
| 562 30     | 285423180 | 563 30     | 285423280 | 564 30      | 285423370 | III           | 2.05      | 1          | 100 1000                             |
| 562 33     | 285423200 | 563 33     | 285423290 | 564 33      | 285423380 | IIIc          | 2.7       | 3          | 300 3000                             |
| 562 31     | 285423190 | _          | _         | _           | _         | Illa          | 3.0       | 5          | 500 5000                             |
| 562 40     | 285423210 | 563 40     | 285423300 | 564 40      | 285423390 | IV            | 3.7       | 10         | 1000 10000                           |
| 562 43     | 285423230 | 563 43     | 285423320 | 564 43      | 285423400 | IVc           | 4.9       | 30         | 3000 20000                           |
| 562 41     | 285423220 | 563 41     | 285423310 | _           | _         | IVa           | 5.3       | 50         | 5000 30000                           |

## Ubbelohde viscometers with TC sensors

Viscometers with suspended ball level for determination of absolute and relative kinematic viscosity of liquids with Newtonian flow behaviour. The measuring levels are marked by TC sensors. The meniscus passage is detected due to the different conductivity of the liquid phase and the gas phase. A measurement stand of the type series AVS/S is not required. TC viscometers can be used to determine the kinematic viscosity of all liquids with Newtonian flow behaviour.

They are especially suitable for liquids that cannot be detected with other systems: untransparent and/or black and/or electric conductive measuring samples.

TC viscometers are manufactured from technical glass types with an expansion coefficient of  $\alpha$  = ca.  $9\cdot 10^{-6}$ . Due to the electric properties of TC sensors, it is important to make sure that a type is selected that is suitable for the required application temperature.



#### TC viscometers

- the technical measurement characteristics are in accordance with DIN 51 562, part 1, ISO/DIS 3105 (BS-IP-SL)
- for use in combination with an automatic viscosity measuring instrument and an AVS 24, AVS 26 or AVS 270 automatic viscometer cleaner
- filling quantity: 18 ... 22 ml
- overall length: ca. 355 mm

# calibrated, with constant for automatic measurements

| Type No.   | Order No. | Type No.   | Order No. | Type No.    | Order No. | Capillary No. | Capillary<br>Ø i [mm] | Constant K<br>(approx.) | Measuring range [mm <sup>2</sup> /s] (approx.) |
|------------|-----------|------------|-----------|-------------|-----------|---------------|-----------------------|-------------------------|------------------------------------------------|
| +10 +80 °C |           | -40 +30 °C |           | +70 +150 °C |           |               |                       |                         |                                                |
| 567 03     | 285423420 | _          | _         | _           | _         | 0с            | 0.47                  | 0.003                   | 0.5 3                                          |
| 567 10     | 285423430 | 568 10     | 285423540 | 569 10      | 285423630 | I             | 0.64                  | 0.01                    | 1.2 10                                         |
| 567 13     | 285423440 | 568 13     | 285423550 | 569 13      | 285423640 | lc            | 0.84                  | 0.03                    | 3 30                                           |
| 567 20     | 285423450 | 568 20     | 285423560 | 569 20      | 285423650 | II            | 1.15                  | 0.1                     | 10 100                                         |
| 567 23     | 285423470 | 568 23     | 285423570 | 569 23      | 285423660 | llc           | 1.51                  | 0.3                     | 30 300                                         |
| 567 21     | 285423460 | _          | _         | _           | _         | lla           | 1.69                  | 0.5                     | 50 500                                         |
| 567 30     | 285423480 | 568 30     | 285423580 | 569 30      | 285423670 | III           | 2.05                  | 1                       | 100 1000                                       |
| 567 33     | 285423500 | 568 33     | 285423590 | 569 33      | 285423680 | IIIc          | 2.7                   | 3                       | 300 3000                                       |
| 567 31     | 285423490 | _          | _         | _           | _         | IIIa          | 3.0                   | 5                       | 500 5000                                       |
| 567 40     | 285423510 | 568 40     | 285423600 | 569 40      | 285423690 | IV            | 3.7                   | 10                      | 1000 10000                                     |
| 567 43     | 285423530 | 568 43     | 285423620 | 569 43      | 285423700 | IVc           | 4.9                   | 30                      | 3000 20000                                     |
| 567 41     | 285423520 | 568 41     | 285423610 | _           | _         | IVa           | 5.3                   | 50                      | 5000 30000                                     |
|            |           |            |           |             |           |               |                       |                         |                                                |